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Noise may be used as a probe of the dynamics of a nonlinear system. Weak 
noise provides information on the local dynamics near a transition. This infor- 
mation can be helpful for identifying the underlying bifurcation. The normal 
form of the bifurcation can then be used as a starting point for a 
phenomenological model of the system. Such an approach furnishes a unified 
explanation of the experimental data near the transition between superfluid 
turbulent states TI and TII in liquid helium counterflow. Strong external noise 
probes global features of the nonlinearities of a system. It may also dramatically 
affect the dynamical behavior of the system and give rise to noise-induced trans- 
itions. The problems of modeling this phenomenon in the liquid helium counter- 
flow system are discussed and a first model, providing a unified description of 
the experimental observations for weak and strong noise, is developed. 

KEY WORDS: Normal form; noise; thermal counterflow; TI-TII transition; 
noise-induced transition. 

1. I N T R O D U C T I O N  

One way to understand the rich temporal and spatial behavior of nonlinear 
systems is to study how simple behavior gives way to more complex 
behavior. From this viewpoint, instabilities of the systems and transitions 
between states with different dynamical behavior are the key to a descrip- 
tion of nonlinear phenomena. The mathematical basis for such an 
approach is bifurcation theory. Bifurcation theory attempts to describe all 
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of the ways in which dynamical systems can make transitions from one 
type of dynamical behavior to another. The simplest situation occurs if the 
system exhibits only transitions between different steady states. In this case, 
singularity theory (1) provides a very complete description of the different 
possibilities. The number of external control parameters that have to be 
adjusted to a particular numerical value for one of these different possible 
transitions to occur is the "codimension" of the bifurcation. We expect that 
low-codimension bifurcations will be most often encountered in typical 
systems, since fewer conditions have to be met. Bifurcation theory describes 
not only the types of transitions that can take the system from one type of 
behavior to another, but also furnishes the dynamics of the system in the 
neighborhood of the transition. It provides "normal forms" which are the 
simplest possible equations that contain the bifurcation in question. (2/The 
steady states of a general model can be related to those of the normal form 
via a smooth local transformation about the transition point. This is the 
very feature that makes bifurcation theory such a powerful tool to analyze 
and understand nonlinear systems. If we can properly identify the underly- 
ing bifurcation for an instability of a physical system, then the normal form 
provides a satisfactory model of the system, at least in the neighborhood of 
the instability. Since a complete theoretical description is generally only 
available for the simplest nonlinear systems, phenomenological models 
based on normal forms are often the only means to ask questions about the 
dynamics of the system, to organize experimental results, and to make new 
testable predictions. 

Clearly, it becomes then an important task to correctly identify the 
underlying bifurcation for an experimentally observed instability. There are 
various methods available in nonlinear dynamics, based on time series 
analysis, phase-space reconstruction, Poincar6 sections, etc., that help with 
this task. Here we will discuss yet another method based on an analysis of 
the fluctuations of the system in the vicinity of the instability. Irregular 
random fluctuations are unavoidable in macroscopic systems. They may be 
"internal fluctuations," due to the complex interaction of parts of a com- 
posite system, or they may be "external noise," due to irregular influences 
imposed on the system from the environment to which it is coupled. We 
will refer to both types of fluctuations as "noise." Noise will cause the state 
of the system to fluctuate. The way these fluctuations evolve as the system 
undergoes a transition can provide clues to the nature of the underlying 
bifurcation. Wiesenfeld (3) analyzed the effect of noise on the power spectra 
of systems close to instabilities of periodic orbits. He found that fluc- 
tuations add features to the spectra which are characteristic of the 
impending bifurcation. We have studied the behavior of fluctuations in the 
vicinity of transitions between steady states and applied our results (4~ to the 



Noise and Superfluid Turbulence in He I1: Theory 1177 

transition between superfluid turbulent states TI and TII in liquid helium 
counterflow experiments/5 7~ 

The intensity of internal fluctuations generally scales with an inverse 
power of the system's size and these fluctuations are thus usually a weak 
source of disturbance in macroscopic systems. Obviously, external noise 
(unless deliberately applied) is usually also weak in laboratory experiments. 
Weak noise will give rise to Gaussian fluctuations in the state variable with 
small amplitude about the deterministic steady state. Thus, weak noise 
provides a natural probe of the local dynamics of a nonlinear system. 
Experimental studies of the effect of small-amplitude noise can therefore 
help with the identification of the underlying bifurcation of a transition 
in a nonlinear system. The results of such studies can be interpreted 
theoretically by using a linearized normal form. Our theoretical analyses of 
linearized normal forms perturbed by weak noise show that the behavior of 
the variance of the fluctuations about the steady state can furnish infor- 
mation about the transition and the nature of the underlying bifurcation. 

If the noise strength is increased, further details of the dynamics of the 
system become accessible. Moderate noise causes the state of the system to 
leave the immediate vicinity of the transition point and to wander over a 
larger region of the state space. In this way, noise of moderate amplitude 
leads, so to speak, to an unfolding (1) of the normal form describing the 
bifurcation. Finally, if strong noise is imposed on the system, the noise 
drives the system even farther away from the vicinity of the transition 
point. In this way global features of the dynamics of the system are 
explored. Deliberately applied external noise can thus be used as a con- 
venient probe of the global nonlinear dynamics of the system. Additionally, 
the interaction of the nonlinear dynamics of the system with strong exter- 
nal noise may give rise to noise-induced transitions, (8-12) which lead to 
drastic modifications of the dynamical behavior of nonlinear systems. 
Noise-induced transitions depend on the exact form of the nonlinearity; dif- 
ferent nonlinear models of a given system that agree reasonably well with 
each other under deterministic external conditions often lead to markedly 
different predictions for the behavior of the system under fluctuating 
constraintsJ TM Studies of noise-induced transitions, and in particular their 
associated "phase diagrams, ''taz) can therefore help in finding a satisfactory 
model which goes beyond normal forms and incorporates global features of 
the dynamics. 

2. W E A K  N O I S E  

Tough and co-workers have studied the transition between two super- 
fluid turbulent states of thermal counterflow in liquid helium. Their 
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experiments have addressed the weak-noise (5'6) and the strong-noise case. (7) 
The essential piece of their apparatus is a reservoir of liquid helium connec- 
ted to a small chamber with a heater by means of a thin flow tube. (For 
more details see refs. 5-7.) The state of the system can be characterized by 
the chemical potential difference A/~ across the tube. This state variable is 
proportional to the vortex line density L in the superfluid flowing through 
the tube. The behavior of the state variable Ap (or L) is measured as a 
function of Q, the rate at which heat is introduced into the system by the 
heater. According to the two-fluid model, the flow through the tube may be 
treated as a counterflow of a normal fluid component, flowing from the 
heater to the reservoir, and a superfluid component, flowing in the opposite 
direction. For low values of 0 the flow of both components is laminar and 
the two components do not interact; there are no vortices in the superfluid, 
L = 0, and the chemical potential difference A# across the tube vanishes. At 
a critical value of ~) the laminar state ceases to be globally stable. A 
turbulent state, which corresponds to the appearance of quantized vortices 
in the superfluid component (L r 0), can now be sustained by the system. 
This turbulent state is denoted TI. The laminar state remains locally stable 
(metastable) and a finite-amplitude perturbation is required for the system 
to "nucleate" vorticity and to make the transition to the turbulent state TI. 
In the state TI the two components experience a mutual friction and the 
chemical potential difference across the tube is no longer zero. As ~) is 
further increased, the state TI undergoes a complex transition to another 
superfluid turbulent state, denoted TII. 

A microscopic theory exists for the turbulent state TII. (14) This state 
can be understood in terms of a homogeneous tangle of vortex lines. 
Schwarz has derived an equation that describes the motion of a vortex in 
terms of its local radius of curvature and normal and superfluid velocity 
fields. When combined with rules concerning the behavior of vortex lines in 
close proximity to each other, numerical simulations yield results in 
excellent agreement with experiments for the TII state. No such successful 
treatment is available for the state TI and the transition between the two 
turbulent states. 

The turbulent superfluid states TI and TII are macroscopic steady 
states. We have made progress in the understanding of the TI-TII trans- 
ition by combining experimental observations on the behavior of the fluc- 
tuations in the state of the system with ideas from bifurcation theory. ~4) 
The TI-TII transition point is defined by the fact that the relaxation time 
passes through a maximum, i.e., it is the point where the state of the system 
is the least stable. Though, by definition, the relaxation time is enhanced at 
the transition point, experiments show no indication that it diverges. In 
other words, the system passes through a region of weakened stability, but 
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no actual instability is encountered. However, further experimental studies, 
in which the resolution is varied, are necessary to establish unambiguously 
that the relaxation time does not diverge at the transition point; finite 
resolution in the experiments would mask divergent behavior of the 
system. 4 

This is the first important experimental clue for identifying the 
underlying bifurcation and writing a normal form to describe the dynamics 
in the vicinity of the TI -TI I  transition. A bifurcation between steady states 
occurs if the Jacobian of the system, evaluated at the steady state, has a 
singularity, i.e., zero eigenvalue. This implies that the steady state loses 
stability and that the relaxation time goes to infinity. However, as men- 
tioned above, depending on the codimension of the bifurcation, a certain 
number of auxiliary parameters have to be adjusted to particular numerical 
values for the bifurcation to occur as the bifurcation parameter is varied. If 
these secondary parameter deviate slightly from these particular values, no 
singularity of the Jacobian and no bifurcation occur. However, by con- 
tinuity, an eigenvalue will pass close to zero. Thus, the system will pass 
through a region of weakened stability. Such a continuous transition 
between two steady states, in which no singularity is encountered, is known 
as an "imperfect" bifurcation. The experimental data on the behavior of the 
relaxation time at the TI -TI I  transition suggest that an imperfect bifur- 
cation occurs in the counterflow system. 

The second clue is contained in the data on the power of the fluc- 
tuations at 0.1 Hz. This power can be taken as a measure for the variance 
or strength of the fluctuations about the steady state of the system. We 
expect the fluctuations to be enhanced at the point of weakened stability, 
i.e., at the transition point. However, the system behaves in a more com- 
plicated and intriguing way. For  the experiments at 1.6 K the strength of 
the fluctuations shows a narrow maximum at the TI -TI I  transition point, 
but, most surprisingly, there is another broad maximum to the left of the 
transition point, i.e., for lower values of Q, which actually dominates the 
peak corresponding to the transition point. The point where the second 
maximum occurs shows no special features at all in the steady-state 
diagram or in the plot of relaxation times. Any phenomenotogical model, 
in order to be satisfactory, must be able to account for this unexpected 
feature of the fluctuations. The situation is even more intriguing for the 
experiments at 1.75 K; there is no clearly resolved local maximum at the 
transition point at all. This imposes additional constraints on the 
phenomenological model. It should be able to describe the change in the 
behavior of the fluctuations as the temperature of the reservoir is changed. 

4 We are indebted to R. Ecke for this remark. 
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As mentioned above, we have used bifurcation theory to organize the 
experimental data and to understand the TI -TI I  transition. The simplest 
transitions between macroscopic steady states are one-state-variable bifur- 
cations. Certain transitions between steady states do have more than one 
state variable in their normal form; however, these all have codimension 3 
or greater. (1) In this sense they are less likely to be encountered in a 
physical system. Therefore, it is quite natural to attempt to model the 
transition between the state TI and the state TII using only a single state 
variable. Furthermore, many properties of the turbulent superfluid states, 
in particular of TII, are successfully described by a phenomenological one- 
state-variable theory based on the Vinen equation. (15'~6) The Vinen 
equation, however, does not describe the TI -TI I  transition. 

We have suggested that the transition between states TI and TII takes 
place via an imperfect pitchfork bifurcation perturbed by both additive and 
linear multiplicative noise. (4) The pitchfork bifurcation is the only codimen- 
sion-2 bifurcation that mediates a continuous transition between steady 
states. Additionally, this bifurcation contains in its unfolding the trans- 
critical and hysteresis bifurcations, which are the only codimension-1 bifur- 
cations giving rise to continuous transitions between steady states. (1) A 
normal form for the pitchfork bifurcation is g(x, Z)= - 2 x -  x 3. [-Signs are 
chosen so that the well-known "pitchfork" diagram of steady states given 
by the roots of g(x, 2 ) =  0 opens out to the left. This facilitates comparison 
with the experimental steady-state curve for the counterflow; see ref. 4.] In 
the normal form, x characterizes the state of the system, generally a 
deviation from some reference state, and 2 is a distinguished parameter, the 
"bifurcation parameter." The pitchfork bifurcation has codimension 2, so 
that two auxiliary parameters must be adjusted in order to achieve the 
singularity at x = 0, 2 = 0. Small perturbations will generally destroy this 
singularity. However, close to the singularity all analytic perturbations are 
equivalent to those generated by two terms with coefficients ao and a 2 in 
the "universal unfolding" of the normal form g(x, 2) of the pitchfork: 

p(x, 2)=ao--2x +a2x2--x 3 (1) 

Steady states x(2) of the unfolded bifurcation are given by p(x(2), 2 ) = 0  
and the dynamics are modeled close to the singularity by .~ = p(x, 2). The 
codimension-2 pitchfork bifurcation is at the origin of the (ao, a2) 
parameter plane, where the two secondary parameters are equal to a 
particular numerical value, a o = 0  and a2 =0.  The line of codimension-1 
transcritical bifurcations is given by ao = 0. The curve ao = a3/27 is the loci 
of codimension-1 hysteresis bifurcations. 

If the secondary parameters are not adjusted to these particular 
values, no singularity and no bifurcation occur. However, when the 
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deviation of the secondary parameters from the particular values necessary 
for a singularity is small, then the system will pass, as the bifurcation 
parameter 2 is varied, through a region of weakened linear stability and an 
imperfect bifurcation occurs, as already discussed above. In the unfolding 
of the pitchfork bifurcation, these imperfect bifurcation have the character 
of imperfect transcritical bifurcations or of imperfect hysteresis bifurcations. 
Near an imperfect bifurcation, i.e., in the region of weakened stability, the 
magnitude of fluctuations about the steady state and their relaxation times 
will be enhanced. However, since no true singularity is encountered, the 
relaxation times will always remain finite, i.e., fluctuations will decay 
exponentially. We call the point at which the relaxation time reaches its 
greatest value the "paracritical" point. 

As mentioned above, much may be learned about the dynamics of a 
system undergoing a bifurcation by analyzing fluctuations. Wiesenfeld has 
thoroughly studied fluctuations in systems bifurcating from limit cycles. (3) 
An analysis of fluctuations associated with imperfect bifurcations between 
steady states has allowed us to show that an imperfect pitchfork bifurcation 
is indeed a satisfactory description of the TI-TII  transition. (4) Our model 
has a deterministic part, based on the normal form (1), and includes two 
sources of noise: 

d x =  [ a o - ( 2 -  z ) x  + a 2 x 2 - x  3] dt + cr 1 dW1 

= p(x ,  2) dt + al dW1 + xz  dt 

dz = - 7 z  dt + cr 2 dW2 

(2) 

(3) 

This model contains the two sources of noise to which any nonequilibrium 
system will inevitably be subject, namely internal noise or thermal noise, 
which represents the influence of the large number of (microscopic) degrees 
of freedom on the behavior of the system. Internal noise generally evolves 
on a time scale very fast compared to the time scale of the system and is 
thus usually modeled by an additive Gaussian white noise. This is the term 
al dW1 in (2). Nonequilibrium systems are open systems and as such are 
coupled to an environment. The fluctuations in the environment are a 
second source of noise for the system. The effect of these fluctuations on a 
nonlinear system is often state dependent, for instance, if they give rise to 
noise in the bifurcation parameter. In our model this leads to the linear 
term xz  dt, modeling a source of random disturbances perturbing the bifur- 
cation parameter 2. Since the ratio of the time scales of the system and the 
external noise can change as the paracritical point is approached, we have 
chosen to represent this linear noise by a Gaussian process with a non- 
vanishing correlation time, namely an Ornstein-Uhlenbeck process 
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(OU noise) with correlation time 7 1. This allows us to describe the com- 
petition between the two time scales close to the paracritical point. 

In the case of weak noise, we can linearize (2) about the deterministic 
steady state x(2) and calculate the variance v of the fluctuations about it. 
The variance v is given by the sum of two terms, v = vl + v2, one due to the 
additive internal fluctuations and the other due to the multiplicative noise. 

An analysis of our model (2) in the near-transcritical limit shows that 
the paracritical point occurs close to the point of maximum curvature of 
the curve of steady states x(2). The contribution vl of the additive noise to 
the total variance is proportional to the deterministic relaxation time, and 
thus reaches its maximum value at the paracritical point. However, the 
contribution v2 of the multiplicative noise rises to the left of the paracritical 
point. It turns out that, depending on the values of the auxiliary 
parameters ao and a2, two types of behavior are possible for the total 
variance v: (1)The total variance has a narrow maximum at the 
paracritical point, corresponding to Vl, and a broad maximum to the left of 
the paracritical point, corresponding to v2. (2)The  total variance has only 
one broad maximum, which occurs to the left of the paracritical point; 
there is no maximum at the paracritical point itself. 

If the parameter values ao and a2 are chosen near the curve of 
hysteresis bifurcations, the paracritical point is close to the inflection point 
in the curve x(2). For  this case of an imperfect hysteresis bifurcation, 
analysis shows that the maxima of Vl and v2 are only slightly separated and 
both occur close to the paracritical point. The total variance always has 
only a single peak. 

A detailed comparison of our model results with the experimental data 
shows that the TI -TI I  transition can be understood in terms of an imper- 
fect pitchfork bifurcation/4) In particular, the system at 1.6 K undergoes an 
imperfect transcritical bifurcation, as indicated by the location of the 
paracritical point on the curve of steady states and the two maxima in 
the power of fluctuations. Use of the same criteria leads to the conclusion 
that at 1.75 K the system goes through an imperfect bifurcation that 
corresponds to a crossover regime between a transcritical and a hysteresis 
bifurcation. Both bifurcations are in the unfolding of the pitchfork bifur- 
cation. The universal unfolding of this bifurcation, appended by random 
forcing terms to model the noise sources of the system, provides thus the 
first unified explanation for the parametric behavior of the steady states, 
the characteristic time of relaxation to those steady states, and the power in 
fluctuations about the steady states near the TI-TII  transition in turbulent 
thermal counterflow in He II. 

The model also predicts a branch of unstable states and another 
branch of stable steady states which have not yet been observed. However, 
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the normal form (1) represents a power-series expansion of the pitchfork 
bifurcation about the singular point, which is close to the paracritical 
point. Therefore, our model will provide a satisfactory description of the 
system only in some neighborhood of the TI-TII transition point. Fitting 
our model to the experimental data, we find that for the imperfect 
hysteresis bifurcation, the second branch of stable steady states never 
passes close to the paracritical point and may well lie outside the region 
where (2) is an adequate model of the TI-TII transition. However, in the 
case of the imperfect transcritical bifurcation the branch of unstable steady 
states closely approaches the paracritical point. Thus, we predict that, close 
to the transition point, the response of the system to perturbations whose 
strength exceeds some critical value will change qualitatively. Indeed, if a 
perturbation carried the system across the line of unstable steady states, the 
system must relax to a different, metastable state, tfthe dynamics continues 
to be described by a single state variable. If the system relaxes back to the 
original stable state, it must do so through a mechanism described by more 
than one state variable. The unstable steady states might then give rise to 
some anomaly in the relaxation time. In any case, if a study is made of the 
response to perturbations for the 1.6 K system near the TI-TII transition 
point, we predict that there will be a perturbation of critical strength, 
beyond which the dynamics changes. 

Our analysis produces good qualitative agreement with experiments, 
but it has two limitations which should not be overlooked. First, it is 
limited to weak noise, since it based on the linearization of the normal 
form. Thus, it is not directly applicable to the moderate- or strong-noise 
case. For moderate noise the full nonlinear normal form needs to be con- 
sidered. However, this is only a technical problem and the theoretical treat- 
ment of the effects of moderate noise requires only a straightforward exten- 
sion of our methods. The situation is quite different for the strong-noise 
case. Strong noise will drive the system far away from the paracritical point 
into regions of state space where even the nonlinear normal form is no 
longer an adequate description of the dynamics. Griswold and Tough have 
conducted experiments with strong external noise and we will come back to 
this problem. Second, we do not take into account the spatial extent of the 
narrow tube through which the helium flows. Temporal fluctuations at one 
end of the tube may be carried by the flow and therefore become spatial 
fluctuations. The measured state variable, the chemical potential difference 
between the ends of the tube, must represent some average of the local 
fluctuations. The good qualitative agreement between our theoretical 
description and the experimental observations suggests that these spatial 
fluctuations do not strongly affect the dynamics of the measured state 
variable, at least in the weak-noise case. 
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3. S T R O N G  E X T E R N A L  N O I S E  

Recently Griswold and Tough have reported that strong external noise 
can have a dramatic effect on superfluid turbulence in thermal 
counterflow. (7) In the weak-noise case, there exists only one superfluid tur- 
bulent state for a given value of Q. Strong external noise modifies the 
TI -TI I  transition and induces bistability between a turbulent state with a 
low vortex line density and the state TII for a certain range of 0. We con- 
jecture that the first state corresponds to the unstable state (see below); 
strong noise apparently suppresses the TI state and stabilizes, in a 
stochastic sense, the unstable state. This represents the first experimental 
observation of a noise-induced transition to bistability in a physical system. 
The existence of this phenomenon was predicted a decade ago, (1~ based on 
studies of a simple model system, the genetic model defined by 

2 = 0 . 5 - x + 2 x ( 1 - x )  (4) 

Here x varies between 0 and 1 and the external parameter 2 varies between 
- 0 o  and or. For a detailed discussion of this model and its biological 
significance see ref. 12. The steady states of (4) are given by 

Xss = (22) -x [ 2 -  1 +(1  _~_ ~2)1/2] (5) 

In other words, for each value of the external parameter 2 there exists a 
unique steady state, which is globally stable, as is easily verified. Thus, the 
genetic model (4) does not display any transition for deterministic external 
constraints. If noise is applied to the external parameter, 2 ~ 2 + a~, then 
the state of the system is described by a probability density p(x, t) and 
steady states correspond to a stationary probability density Pss(X) (~ is a 
zero-mean, unit-variance stationary random process). We have argued ~12) 
that a transition for a system subject to noise corresponds to a qualitative 
change in psi(X). We have also argued (12) that the extrema xm of psi(x) are 
the appropriate indicators of a qualitative change in the stationary 
probability density and hence of a transition in the behavior of the system. 
Further, the maxima are the most probable states which are preferentially 
observed in experiments; they correspond to the states around which the 
system fluctuates. If the external parameter 2 of the genetic system is 
perturbed by Gaussian white noise, then the extrema of psi(x) are given 
by(lO.X2) 

0.5--Xm+J.Xm(1--Xm)--(ff2/2)Xm(1 -- xm)(1 -- 2xm) = 0 (6) 

Consider the case that the external parameter has a zero mean, 2 = 0. Then 
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the deterministic steady state is given by xss = 0.5. From (6) we find for the 
system perturbed by external noise 

and 

Xm, o =0.5 

xm, +_= {1 -t- f1 -- (4/0-2)]1/2}/2 for 0-2 >~0-c= 4 2  

Thus, the system with external white noise has a noise-induced critical 
point at 2c=0 ,  0-2=4, and xc=0.5.  (m'~2) For  0-2<4, the stationary 
probability density has a single peak centered on Xm, O = 0.5. At 0-~ = 4, this 
maximum becomes a double maximum and for 0-2> 4 it splits in two, the 
probability density becomes double-humped. The external noise has 
induced bistable behavior! Recall that for deterministic external constraints 
no bistability is possible. This noise-induced transition is robust and occurs 
also for colored noise, i.e., noise with a nonzero correlation time. ~ The 
genetic model with external noise is a simple illustration of the surprising 
fact that external multiplicative noise, in addition to disorganizing the 
system, can also impose a structure that is not present without the noise. (12) 

Though the experiments of the effect of external noise on superfluid 
turbulence confirm qualitatively the prediction of the genetic model as to 
the existence of noise-induced critical points, a quantitative theoretical 
treatment of the noise-induced bistability of the TI and TII states is no 
simple matter. We face several complications: 

1. We are now concerned with external noise which involves a large 
range of heat currents (~ and spreads the probability distribution for the 
system over a wide interval in the domain of the state variable. The 
dynamics is no longer dependent on only the local character of the TI -TII  
transition; global aspects of the system come into play. So our task is now 
to find a simple model that satisfactorily describes the essential feature of 
the weak-noise case as well as those of the strong-external-noise case. 

Our approach is based on the following assumptions. (~7) Even in the 
strong-noise case the superfluid turbulence is still described by one state 
variable. As Griswold and Tough (v) remark, there is no experimental 
evidence to the contrary (however, see below). Since we are looking for a 
unified model that contains the weak- and strong-noise cases, our 
dynamical equation is based on the unfolded normal form (2) of the 
pitchfork bifurcation. However, it is amended in several way in order take 
account of several features of the global dynamics revealed by the 
strong-noise studies: 

5c = f i x ,  2 )=k(L  '/2) m(2) p(x, 2) (7) 
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The factor k(L  m)  is the mechanism by which we introduce the 
laminar steady state, L = 0, and the unstable steady state that must exist 
between the turbulent and laminar steady states. As mentioned above, 
experiments show that the counterflow system can be maintained in a 
metastable laminar state well past the critical heat current of the TI-TII 
transition. This is a global feature of the dynamics and as such is obviously 
not contained in the normal form (2), which is valid only locally near the 
TI-TII transition point. The laminar steady state must correspond to a 
zero of f ( x ,  2) when L = 0 .  This zero is supplied by k(L~/2). We have 
chosen for k (L  1/2) the following form: 

k (L  l/z) = 1 - a/[1 + (L 1/2 - L~/Z)Z/w 2 ] 

For further details see ref. 17. 
The function of the factor m(2) is to bias the system toward greater 

relaxation times as 2 increases. It has the general form 

m(2)= 1 +c12+c222 

The motivation for this factor comes from the measured relaxation times 
for the counterflow system as shown in Fig. 64 of Griswold's 
dissertation/18) The experimental data show a sharp peak in the relaxation 
time at the paracritical point, as does the pitchfork (2). For larger values of 
2, however, the relaxation time soon begins to increase linearly with 2. We 
found no noise-induced bistability in our model if the bias factor m(2) was 
omitted. 

2. In the strong-noise experiments, the current through the heater is 
a random current with an average dc value. In accordance with Ohm's law, 
the random current must be squared to give the random heat current 
acting on the system. One effect of this squaring is to modify the average 
amount of heat generated as compared with that estimated from the 
average current through the resistor. This effect has already been taken into 
account by Griswold and Tough in reporting their data. Their average heat 
currents include the effect of squaring the random component. The other 
effect of the squaring is to change the probability distribution of the noise. 
If the random component of the electrical current originally had a 
Gaussian distribution, the random component in the heat output will have 
a somewhat narrower distribution. In our preliminary studies we have 
ignored this effect. Our analysis aims only at qualitative agreement with the 
strong-noise experiments in a first stage, and furthermore, there is a second 
and more serious source of nonlinearity in the problem. This nonlinearity 
of the noise is caused by the fact that the normal variables of model (2) are 
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related to the physical variables L and 0 by the following coordinate 
transformation~7): 

x = L 1/2 -- s o + b, 2 = Q - qo 

Here s is the slope of the line of steady states TII, - b is the intercept of the 
continuation of the line of TII states with the L 1/2 axis, and qo is the heat 
current at the TI-TII transition point. This coordinate transformation has 
the consequence that powers of the external noise up to fifth order appear 
in the model equation. This nonlinearity makes the analysis of the problem 
very interesting from the point of view of stochastic methods. It requires an 
extension of the wideband perturbation method ~2) in order to deal with 
the problem in the short-time correlation limit. Using a wideband pertur- 
bation analysis, we obtain a Markovian diffusion process that describes the 
system in the short-correlation-time limit. This limit is relevant for the 
superfluid turbulence experiments, since the correlation time of the external 
noise is about an order magnitude smaller than the relaxation times of the 
system. 

3. The data for the external noise experiments show that the 
stationary probability density always decreases to zero at the laminar state, 
even though in many cases it reaches a sharp maximum at a low vortex 
line density very close to the laminar state. This was true for external noises 
whose standard deviations were 15% and 49% of the paracritical heat 
current. Since the laminar state is locally stable and exists for a large range 
of values of the heat current, in fact, as already mentioned for values well 
beyond the paracritical value, and since the state variable L is independent 
of ~), the external noise will not kick the system out of the laminar state. It 
is only the very weak internal noise that could drive the system out of the 
stable laminar state. Thus, the Markovian diffusion process should spend a 
very large fraction of its time in the laminar state. Probability should 
accumulate there and produce a sharp maximum in the stationary 
probability density. Clearly, the experimental data imply that some feature 
in the dynamics destabilized the laminar state. A good candidate is random 
spatial inhomogeneities. We expect these inhomogeneities to play an 
important role if the average vortex line density is small, whereas they 
should have a negligible effect near the turbulent states with finite average 
vortex line densities. This question needs, however, further theoretical and 
experimental study. In any case, the experiments indicate that description 
in terms of a single state variable is unsatisfactory for strong noise in the 
neighborhood of the laminar state, whereas it seems to be valid everywhere 
else as remarked above. A way to reconcile these observations is to 
prescribe special boundary conditions for the Markovian diffusion process 
near L=0 .  We have chosen reinjection boundary  conditions: When a 
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realization reaches the state L = 0, it is immediately sent back to a finite 
value of L. In this way, the theoretical description keeps its one-state- 
variable character. The fact that other state variables become important 
near the laminar state is modeled by the reinjection process. This process 
captures the essential role of the additional state variables, namely the 
destabilization of the laminar state which prevents probability from 
accumulating there. 

A model based on the above assumptions and considerations provides 
a first attempt to describe the superfluid turbulence in a unified way for 
both weak and strong noise. In the weak-noise limit it reduces, by 
construction, to the dynamical equation (2). In the strong-noise regime, it 
displays noise-induced bistability. However, the strong-noise results are 
preliminary so far, and further studies are required to confirm that (7), 
combined with reinjection boundary conditions, is a satisfactory model for 
superfluid turbulence with strong external noise. 
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